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Abstract— Smartphone usage has increased rigorously. Android is one of the most used operating systems in 

various smartphone worldwide. It is open-source and has chances of installing third-party applications 
without permission. Android is the most vulnerable operating system for a malware attack. This is a big threat 
to cyber security. In this paper, we make a dynamic analysis using android network traffic logs. We propose 
an ensemble modelled approach called XGBoost to detect malware and benign applications using the traffic. 
The proposed model is providing the accuracy of 92.28% and a Kappa coefficient of 0.83. Finally, some of 
the good set of features from android applications are outlined that helps us to label them as malware and 
benign. The proposed model is tested across various metrics and they are providing promising results. 
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I. INTRODUCTION 

In modern days, smartphones are an essential commodity 
of life. There many numbers of mobile applications 
providing various facilities to users. These mobile 
applications are installed on smartphones. The smartphones 
contain various numbers of sensors that are used by many of 
the applications that create a large number of complex data 
[8,12]. From 2008, an android made its place with the users 
due to its user-friendly features in applications. Android has 
access to user’s information. The leakage of these data 
destroys the user’s android privacy. Hence attackers are 
interested in these data. So, they are spreading Malware 
applications in the android market. 

According to the survey made by Kaspersky labs, 80 % 
of the smartphones uses android as their operating system. 
One million malware attacks on android devices were 
recorded in 2019. Malware is the program that disrupts the 
system operations and stores the users personal and financial 
information. In the Android platform, to overcome malware 
application it asks permission from the users while installing 
[11]. Permissions are offered on its personal because both 
malicious and benign requires the same set of permissions. 
Hence this is an ineffective way to detect a malicious 
application. A Framework must be created to classify 
malicious and benign applications This can be done by 
anyone of the two methods. 

 Static Analysis: It is a quick and inexpensive way to 
detect malware application by analysing the code. They 
analyse the variable usage, API calls, code sequences and 
statements. They can classify the application into malicious 
or benign without executing the application. 

Dynamic Analysis: It is an effective way to detect 
malicious or benign application by executing the applications 
in a controlled manner and watching its behaviour. Sandbox 
is commonly used for dynamic analysis. 

 We use dynamic analysis because of its efficiency. 
During the execution of any applications, few features will 
be recorded. All response and requests are recorded. This log 
is used to label the application into benign and malware. 

A. Working Procedure and Organization of paper 

Initially, we shape the dataset and remove all the 

outliers. Outliers are the numbers which are at the abnormal 
position other than the normal values. Then the data is 

normalized and standardized. Now the dataset is divided for 

training a testing part. The algorithm is trained and then 

predicted across various algorithms such as K-mean, 

Decision tree, Naive based, SVM, Ada-boost and XGBoost. 

By adopting standard metrics such as recall, precision, 

accuracy, F1 score which is also called as sensitivity and 

specificity to measure how efficient and to check the 

performance of our work by running the algorithm on 

dataset produce by reputed organizations. 

 
In the next portion, we discuss the remaining works of 

our paper as mentioned below. Section II deals with the 

bibliography that has been the base papers for the current 

work carried out in this paper, Section III emphasizes on 

design, methodology and implementation of the proposed 

algorithm, Section IV discusses results and analysis that 

includes metrics and performance evaluation with a 

different algorithm. Finally, the paper is ended by the 

conclusion in section V. 

II. LITERATURE SURVEY 

 Anshul Arora [2] et.al. has developed a detector to detect 
malware and benign applications using the rule-based 
classifier. Initially, they analyse the features according to the 
behaviour of network traffic. Then they distinguish the 
features depending on the importance. They build the 
classifier and train the traffic. The classifier is used to predict 
the traffic as malware or benign. This experiment is only 
specific to those malware which is connected to remote 
servers in the background. 

Westyarian et al. [3] use 205 malware and benign 
applications for analysis. They use kernel-level logs such as 
API system calls based on permissions for analysis. They 
make a correlation comparison that doesn’t affect the 
machine learning algorithm for detecting malware. They 
classify using SVM, J48 and random forest machine learning 
algorithms.  
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 Mehedee Zaman et al. [4] has provided in detail a method 
to detect the malware. They create an application URL table 
which has 4 processes that are dumping the packets, logs of 
netstat, important features from packet dump and 
aggregation of information from packet dump and logs of 
netstat. Finally, the table consists of application ID and URL 
for which they contact. Then they monitor the applications 
which try to contact the malicious domains. They make an 
analysis of application behaviour using sys-call trace to build 
a model to detect the malware applications. 

 Taniya Bhatia [6] et al. has performed a dynamic 
analysis. They have collected 50 malicious and malware 
applications. Then they use sys-call capture and collect all 
the traces of applications. They try to understand the 
behaviour of this application by considering the system calls 
made by these applications. Decision tree, J48 and random 
forest algorithm are used to classify the applications as 
malware and benign. 

 Satish Kandukuru et al. [7] has built a hybrid model to 
classify malware and benign applications. They make a two-
level analysis. First, they extract naïve library, byte code and 
XML file from the application. Then they extract metadata 
and list of permissions requested by the applications. They 
analyse using this permission bit vectors. Secondly, they 
make a traffic analysis of TCP and HTTP packets. They use 
to try to find out various keywords such as OS details, SIM 
serial details and so. These keywords give information about 
data leakage. Some features are extracted from this traffic 
and analysis is made to classify the application as malware 
and benign. 

 Anshul Arora and Sateesh [9] have built an NTPDroid 
model to detect the malware application. They make both 
static and dynamic analysis. Initially, they extract features by 
capturing network traffic. Then they extract permissions 
from an XML file.  The features and permissions are 
combined to make combine patterns. Finally, they generate 
patterns of both malicious and benign applications, that helps 
in defending malware. They classify the application by 3 
ways first by using permission alone, second by traffic and 
third by combining permission and network traffic. 

 According to Pradeep Kumar Tiwari et al. [13], they 
collect all the applications. Then each application is 
subjected to 3 types of analysis such as pre-static, static and 
dynamic analysis for extracting important features. Then the 
analysis is monitored in 4 levels, in first they make package 
level analysis by monitoring applications meta-data and 
manifest files, second, they make user-level monitoring how 
the device behaviour changes while interacting with the 
users, third they make application-level monitoring to check 
if there is any information leakage, frequency of incoming 
and outgoing messages, fourth they make kernel-level 
monitoring by monitoring system calls and inter-process 
communications. They use Dropbox for extracting features 
from the traffic. Summarising all these analysis results, then 
they are labelled as malware and benign applications. 

III. METHODOLOGY 

 This section describes the dataset description, 
architectural diagram and complete working procedure of the 
detector. 

A. Dataset Description 

The dataset contains the collection of 7500 benign 

applications. This collection is a group of 50 android 

families. The collection also has 5500 malware applications 

of 180 families of malware. The traffic is in pcap files. 

Initially, pcap files are preprocessed in Droid Box to capture 

traffic for getting network features [5]. The below table 

gives the feature description of the dataset. 

 
Table 1: Dataset Feature Description 

Features Description 

TCP Packets 
Total number of TCP packets transmitted and 

received via the communication 

Distinct Port TCP Total number of packets other than TCP 

External IP’s 
Number of External IP’s tried to communicate 

application 

Volume of Bytes 
Total Bytes transmitted from application to 

external site 

UDP Packets 
Number of UDP Packets send and received 

via a communication 

Source Application 

Packets 

Number of packets transmitted from 

application to server 

Remote Application 

Packets 

Number of packets received from the 

application to external site 

Source Application bytes 
Number of bytes transferred between 

application and server 

Source Application bytes 
Number of bytes transferred between server 

and external sites 

Duration Total time of communication 

Local Packet Rate 
Average packet rate between application and 

server 

Remote Packet Rate 
Average packet rate between server and 

external sites 

DNS Query Number of DNS queries 

Type Target values benign or malware 

 

B. Architectural Diagram and Working 

 We make a dynamic analysis on Android Network 
Traffic dataset [5] in our paper. The traffic created by the 
applications while executing is captured. Initially, we read 
dataset. It contains various features as discussed in the above 
section. The target values are either Benign or Malware. 
There are 5000 benign rows as the target type and 3500 
malware rows as their target type. The architectural diagram 
is shown in figure 1. We clean the data by removing the 
outliers and Null values. Outliers are the values which lie in 
some abnormal position than other values. If we do not 
remove these outliers, then it may affect the model during the 
time of classification. There are few outliers which are found 
during the analysis listed below in figure 2.  
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Figure 1: Flowchart of the Working Process 

 

      

 
(i) 

 

 
(ii) 

 
Figure 2: Outliers in (i) TCP Packets (ii) Distinct port TCP (iii) Remote 

Application Packets 

 

     We can observe in figure 2 of (i) where the values in 

TCP packets are abnormal the values are quite continuous 

till 15000 then on it suddenly moves to 25000 and then to 

37000. Where the values are in abnormal positions. Till 

15000 the values are normal then on there is a sudden 

change. Hence, we choose the data with TCP packet value 

less than or equal to 15000.  Similarly, in distinct port TCP 
values, less than 1500 and Remote application packets less 

than 15000 values are normal values others are at an 

abnormal place. Before removing outliers, we remove the 

columns which are filled with null values. 

 

     Once all the null and abnormal values are removed, we 

standardize the data using the robust scalar technique. The 

use of robust scalar is reducing the effect caused by the 

outliers. Robust scalar removes the median from the feature 

vector and scale the data according to the range between 1st 

and 3rd quartile according to the formula listed below. 

 
 

 

 

After standardizing the values, we separate the data into two 

parts training and testing. The separation is done in 70-30 

pattern i.e. 70% for training and 30% for testing. Then we 

train these data to various models/algorithms and predict the 

malware and benign applications. The results of these 

models are discussed in the next section 

 

IV. RESULTS AND ANALYSIS 

A. Metrics 

As discussed in the previous section the performance of the 
algorithm is measured by standard metrics figure 3 using 
standardized formulas such as Precision, Recall, Accuracy, 
F1 Score are applied [1] part of specificity and sensitivity 
along with analysis [10]. The above metrics are calculated 
based on the following outcomes.  

 

Figure 3: Confusion Metrics 

 

Scaled value  
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1. True Positive (TP), when occurrence and 
classification both are benign.  

2. False Negative (FN), when occurrence being 

positive i.e. benign, but the classification is 

malware.  
3. True Negative (TN), when occurrence and 

classification both are malware.  

4. False Positive (FP), when occurrence being 
negative i.e. malware but the classification is 
benign. 

5. Recall, the proportion of correctly classified 
positive occurrences from positive cases. 

 
6. Precision, the proportion of correctly classified 

positive occurrences from cases that are predicted 

as positive. 

 
 

7. Accuracy is the proportion of correct classifications 

by a total number of cases. 

 

 
 

B. Results and Discussion of Analysis 

Ensemble models are based on a machine learning approach 

they combine all the decisions made by multiple models to 

improve the overall performance. This can be done using 

advance techniques such as Bagging, Stacking and 

Boosting. Stacking makes a prediction using multiple 

models to form a new model. Bagging creates subsets of 

observation with replacement from the data. The subset 
must be less than the original sets. Boosting is a sequential 

process to correct the errors made by the previous model. 

XGBoost algorithm is an advancement of Gradient Boost 

algorithm. XGBoost algorithm is based on Bagging and 

Boosting ensemble techniques. When we apply XGBoost 

model on our dataset we get the following results as shown 

in figure 4. 

 

 
 

Figure 4: Result of XGBoost model 

We have applied our dataset with various algorithms such as 

Random Forest, Naive Based, K-neighbors, XGBoost, 

AdaBoost and SVM with custom kernels linear regression, 

polynomial, sigmoid and radial bias function. The accuracy 

with these models is shown below in figure 5. By seeing the 

figure, we may say that XGBoost model is providing the 
best accuracy rather than other models and it is the best fit 

for this dataset. Kappa coefficient is used to check the inter 

and intra-reliability of the experiment, which should value 

around 0.8-1 for best fit. And XGBoost algorithm Kappa co-

efficient is around 0.83 which has good reliability on the 

experiment. 

 

 
 

Figure 5:Accuracy of Various Models 

 

V. CONCLUSION  

     In this paper, we initially discuss the malware 

applications in android and its effects. Then we explore 

various base papers and their implementation to classify 

malware and benign. Next, we analyze android network 
traffic dataset and discuss the methodology. Finally, we 

discuss the results. We have used various models to predict 

using our dataset. But XGBoost is giving better performance 

with the accuracy of 92.28% rather than other models and it 

is the best fit for our dataset. The XGBoost is tested across 

various metrics and has provided promising results. 
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